The effect of anti-bacterial nanofibrous scaffolds on osteogenic differentiation of human mesenchymal stem cells <u>Thamonwan Diteepeng</u>¹ Mahsa Mohiti-Asli² and Adisri Charoenpanich¹

 ¹ Department of biology, Faculty of science, Silpakorn University, Nakornpathom, Thailand
 ² Department of biomedical engineering, North Carolina state university, North Carolina, USA Email addres: di.thamonwan@gmail.com

Abstract

Silver is a well known antimicrobial material for a wide range of microorganisms. In this study, silver-releasing poly(lactic acid) (PLA) nanofibrous scaffolds were synthesized and evaluated for it biocompatibility with human adipose-derived mesenchymal stem cells (hAMSC). Co-culture of hAMSC with Methicillin-Resistant *S. aureus* (MRSA) on silver-releasing scaffold was performed to mimic the situation of *in vivo* bone infection. The results showed that silver-releasing nanofibrous scaffolds were suitable for proliferation and osteogenic differentiation of hAMSC. However, the silver-coated scaffolds did not diminish the growth of MRSA. Further study to improve the anti-microbial properties of the scaffold will progress the scaffold development for bone engineering.

Introduction

Various types of silver have been used as

antimicrobial material such as silver nanoparticles, silver ion and silver nitrate.^{1,2} However, overuse of silver can cause adverse effect on human cells.

Control-released nanofibrous scaffold, a new approach to release an appropriate concentration of silver, have been developed to exhibit the excellent antimicrobial properties without mammalian cell cytotoxicity.³

In this study, silver-releasing nanofibers were synthesized by electrospinning of poly(latic acid), following with Silvadur ET[™] coating. Biocompatibility and antimicrobial effect of the scaffold was then evaluated with hAMSC co-culture with MRSA on the scaffold.

Objective

To investigate the effect of silver-releasing nanofibrous scaffold using Silvadur ET^{TM} , a silver release coating, on the proliferation and osteogenic differentiation of hAMSC, and on growth inhibition of MRSA.

Methods

Fabrication of PLA nanofibrous scaffold by

1. Characterization of silver-releasing PLA nanofibers

Fig. 1. Silver-releasing nanofibers with the naked eyes (a) and under SEM. (b)

X-ray photoelectron spectroscopy (XPS)

The presence of silver over the entire surface of silver-releasing nanofibrous scaffold was shown in XPS analysis (Fig 2).

Fig. 2. XPS spectrum for silver-realeasing nanofibers.

• Synthesized silver-releasing PLA nanofibers appeared as a smooth fabric sheet (Fig.1a).

UNC<mark>N</mark>NCSU

• SEM analysis of the nanofibers showed that the silver particle was not presence on the fiber surface (Fig.1b).

Silver-releasing nanofibrous scaffold supported the viability of hAMSC (red bar) The silver-releasing scaffold did not diminish the growth of MRSA (purple bar).

3. Calcium deposition

Alizarin red staining
Calcium quantification assay

derived mesenchymal stem cells (hAMSC) (120k cells/nanofibers)

References

- 1. M.K. Rai, S.D. Deshmukh, A.P. Ingle and A.K. Gade (2012). Silver nanoparticles: the powerful nanoweapon against multidrug-resistant bacteria. *Applied microbiology*, 1-12.
- 2. Hidalgo E, Bartolomé R, Barroso C, Moreno A, Domínguez C. (1998). Silver nitrate: antimicrobial activity related to cytotoxicity in cultured human fibroblasts, *Skin Pharmacol Appl Skin Physioll*, 11(3),140-51.
- 3. Mahsa Mohiti-Asli, Behnam Pourdeyhimi and Elizabeth G. Loboa. (2014). Novel, silver-ion-releasing nanofibrous scaffolds exhibit excellent antibacterial efficacy without the use of silver nanoparticles. *Acta Biomaterialia*, 10, 2096–2104.

Acknowledgements

This research was supported by the DPST scholarship and department of Biology, Silpakorn university. I would like to acknowledge Dr. Adisri Charoenpanich (advisor), Professor Dr. Elizabeth G. Loboa and Dr. Mahsa Mohiti-Asli (co-advisor) for assistance and helpful discussion.

Fig. 4. Quantification of calcium deposition by hAMSC and MRSA

Silver-releasing nanofibrous scaffold did not affect the osteogenic differentiation of hAMSC. However, deposited calcium by MRSA interfered the results in the co-culture system.

Conclusions

Silver-releasing nanofibrous scaffold synthesized in this study was suitable for proliferation and osteogenic differentiation of hAMSC. However, the silver-coated scaffolds did not diminish the growth of MRSA. Therefore, antimicrobial efficacy of silver-releasing nanofibers should be developed to inhibit the growth of bacteria before any further study.